Rigged Configurations for all Symmetrizable Types
نویسندگان
چکیده
In an earlier work, the authors developed a rigged configuration model for the crystal B(∞) (which also descends to a model for irreducible highest weight crystals via a cutting procedure). However, the result obtained was only valid in finite types, affine types, and simply-laced indefinite types. In this paper, we show that the rigged configuration model proposed does indeed hold for all symmetrizable types. As an application, we give an easy combinatorial condition that gives a LittlewoodRichardson rule using rigged configurations which is valid in all symmetrizable KacMoody types.
منابع مشابه
Crystal Structure on Rigged Configurations and the Filling Map
In this paper, we extend work of the first author on a crystal structure on rigged configurations of simply-laced type to all non-exceptional affine types using the technology of virtual rigged configurations and crystals. Under the bijection between rigged configurations and tensor products of Kirillov–Reshetikhin crystals specialized to a single tensor factor, we obtain a new tableaux model f...
متن کاملRigged Configurations and the Bethe Ansatz
This note is a review of rigged configurations and the Bethe Ansatz. In the first part, we focus on the algebraic Bethe Ansatz for the spin 1/2 XXX model and explain how rigged configurations label the solutions of the Bethe equations. This yields the bijection between rigged configurations and crystal paths/Young tableaux of Kerov, Kirillov and Reshetikhin. In the second part, we discuss a gen...
متن کاملA crystal theoretic method for finding rigged configurations from paths
The Kerov–Kirillov–Reshetikhin (KKR) bijection gives one to one correspondences between the set of highest paths and the set of rigged configurations. In this paper, we give a crystal theoretic reformulation of the KKR map from the paths to rigged configurations, using the combinatorial R and energy functions. It makes the large scale structure of the combinatorial procedure of the KKR bijectio...
متن کاملRigged Configurations and Catalan Objects: Completing a Commutative Diagram with Dyck Paths and Rooted Planar Trees
We construct an explicit bijection between rigged configurations and rooted planar trees, which we prove is the composition of the the bijection defined by Kerov, Kirillov, and Reshitikhin between rigged configurations and Dyck paths and the bijection between Dyck paths and rooted planar trees defined by the planar code.
متن کاملFermionic Formulas and Rigged Configurations under Review
We give a review of the current status of the X = M conjecture. Here X stands for the one-dimensional configuration sum and M for the corresponding fermionic formula. There are three main versions of this conjecture: the unrestricted, the classically restricted and the level-restricted version. We discuss all three versions and illustrate the methods of proof with many examples for type A n−1. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017